Os 30 anos da seção *Química e Sociedade*e a perícia em pinturas artísticas

Edemar Benedetti Filho, Leonardo Henrique M. Leme e Alexandre D. M. Cavagis

Em três décadas de história, a seção *Química e Sociedade* tem sido um excelente canal de divulgação científica, trazendo discussões relevantes relacionadas à interface química/sociedade e contribuindo na formação de professores e alunos, com textos sobre temas geradores interessantes ao ensino de Química. Nesse contexto, a primeira parte deste trabalho traz uma análise dos artigos publicados nessa seção na última década, a qual revela um declínio no número total de artigos, quando comparado às duas décadas anteriores, além de um hiato de quase dois anos sem publicações. A fim de amenizar tal lacuna e buscando uma maior promoção dessa seção, a segunda parte deste artigo discute a importância de análises físico-químicas nas perícias de pinturas artísticas, que conferem fortes indícios de autenticidade às obras, a partir de assinaturas químicas dos pigmentos, as quais também revelam detalhes sobre materiais e métodos empregados por grandes pintores da nossa História.

Recebido em 04/06/2025; aceito em 27/10/2025

Introdução

A seção Química e Sociedade nasceu juntamente com a Química Nova na Escola, em maio de 1995, seguindo uma linha editorial com a premissa de promover discussões e reflexões sobre questões relevantes que envolvam o papel da Química na vida cotidiana da população, buscando divulgar, de forma crítica, como o conhecimento químico está diariamente presente em nossas vidas. Ao longo das últimas três décadas, tem contribuído bastante para a divulgação científica, especialmente sobre a importância do conhecimento químico na evolução social do País, bem como para o desenvolvimento da cidadania. Nesses 30 anos de história, foram publicados 88 artigos, sendo o último na edição de agosto de 2023 (Vieira et al., 2023), sobre a aplicação de óleos essenciais no combate ao mosquito Aedes aegypti. Nesse contexto, o presente artigo teve como objetivos: 1) Analisar as publicações na seção Química e Sociedade na última década, visando a complementar o trabalho de Silva e Gomes (2015), que haviam feito um levantamento referente aos primeiros 20 anos (1995 a 2015); 2) Contribuir com um texto sobre um tema socialmente relevante: a perícia em obras de arte, ilustrando a aplicação de métodos físico-químicos na autenticação de quadros, assim como

na elucidação de técnicas e procedimentos empregadas por grandes pintores da História.

Análise dos artigos publicados na última década

A metodologia adotada baseou-se em uma pesquisa qualitativa e interpretativa, a partir da perspectiva da Análise de Conteúdo, proposta por Bardin (2011), que consiste em:

"um conjunto de técnicas de análise das comunicações, visando a obter, por procedimentos sistemáticos e objetivos de descrição do conteúdo das mensagens, indicadores (quantitativos ou não), que permitam a inferência de conhecimentos relativos às condições de produção/recepção (variáveis inferidas) destas mensagens" (Bardin, 2011, p. 47).

A Química Nova na Escola (QNEsc) já chegou ao volume 47 e, embora tenha ocorrido um aumento progressivo em suas publicações ao longo desses 30 anos de história, na última década, o número de artigos na seção *Química e Sociedade* diminuiu consideravelmente, como se verifica na Figura 1. De 2016 a 2025, em termos absolutos, houve uma redução de 40% no número de artigos publicados nessa

seção, quando comparado ao período de 2006 a 2015, além de um hiato de quase 2 anos desde a última publicação.

Figura 1: Comparativo entre os números totais de artigos publicados na QNEsc (em azul) e aqueles publicados na seção Química e Sociedade (em laranja) nas três últimas décadas.

Em termos relativos, entre 1995 e 2005, os artigos publicados na seção *Química e Sociedade* representavam cerca de 10 % do total de trabalhos publicados na QNEsc no mesmo período, percentual que aumentou para 11% na

década seguinte (2006-2015) e caiu para 6% na última década (2016-2025). Cumpre destacar que, desde o volume 45, número 3, não houve mais nenhuma publicação nesta seção.

Os temas abordados na última década têm seguido a mesma tendência observada na análise de Silva e Gomes (2015), com discussões e reflexões envolvendo os contextos social e tecnológico, bem como o papel da Ciência na vida cotidiana das pessoas. A presente análise, realizada por meio das temáticas descritas nos resumos e das palavras-chaves de cada artigo, tomou como base a mesma organização de Silva e Gomes (2015), identificando as áreas como: Ciência e Tecnologia (CT), Meio Ambiente (MA), Saúde (S), Alimentos (A), Energia (E), Polímeros (P) e Saberes Populares (SP). O Quadro 1 apresenta os títulos (abreviados, em alguns casos) e as temáticas abordadas em cada artigo publicado na última década, a fim de facilitar a identificação das áreas de cada trabalho.

Na Figura 2, temos os números de publicações em cada área temática, nos últimos 10 anos. Observa-se que o maior número foi sobre "Meio Ambiente", com um total de 8 artigos. Porém, não houve nenhuma publicação nas áreas de "Energia" e "Polímeros".

Quadro 1: Artigos publicados na seção Química e Sociedade, no período de 2016 a 2025, com as respectivas propostas temáticas e áreas

TÍTULO	TEMÁTICA	VOL. / Nº	ANO	ÁREA
O incrível mundo dos materiais porosos	Abordagem reflexiva sobre materiais porosos, correlacionando a presença de poros com suas propriedades físico-químicas e aplicações	38 (1)	2016	CT
Uso de softwares edu- cacionais no ensino de química	Uso de tecnomídias em metodologias alternativas, com objetivo de promover mudanças conceituais no ensino e aprendizagem de química	38 (2)	2016	CT
A tecelagem Huni Kuin e o ensino de química	Inserção da cultura indígena como tema transversal para o ensino de conteúdos de química	38 (3)	2016	SP
Os tecidos e a nanotecnologia	Visão geral da química envolvida na fabricação de tecidos e importância da nanotecnologia para agregar valor a materiais têxteis de forma ecologicamente correta	38 (4)	2016	CT
A química na odontologia	Presença da química nos consultórios odontológicos e na rotina de dentistas e pacientes, desde obtenção de radiografias a anestésicos locais e materiais para restauração	39 (1)	2017	S
Ensino de química e a ciência de matriz africana	Intervenção pedagógica sobre racismo e suas raízes históricas, bem como conceitos no estudo de propriedades dos metais, no sentido de desconstruir a visão de ciência hegemônica	39 (2)	2017	SP
Terpenos, aromas e a química dos compostos naturais	Terpenos (alcenos naturais) na química dos compostos de aromas, como óleos essenciais, e a interdisciplinaridade entre biologia e química, na produção biotecnológica seletiva de compostos de aroma	39 (2)	2017	А
O rio e a escola	Extensão universitária envolvendo estudantes de pós-graduação no ensino contextualizado de química em uma escola pública, relacionando o meio ambiente local ao cotidiano dos alunos	39 (2)	2017	MA
As visões sobre ciência e cientistas dos estudantes de química da EJA	Estudo sobre como os estudantes da Educação de Jovens e Adultos (EJA) enxergam a ciência e o cientista, visando a desmitificar imagens distorcidas sobre a prática científica	39 (3)	2017	SP
Surfactantes sintéticos e biossurfactantes	Abordagem sobre vantagens e desvantagens econômicas, bem como impactos ambientais de surfactantes sintéticos e biossurfactantes	39 (3)	2017	MA

Quadro 1: Artigos publicados na seção Química e Sociedade, no período de 2016 a 2025, com as respectivas propostas temáticas e áreas (cont.)

TÍTULO	TEMÁTICA	VOL. / Nº	ANO	ÁREA
Quitosana: da química básica à bioengenharia	Conceito de copolímero natural, principais formas de obtenção da quitosana e suas multifuncionalidades em diferentes áreas e a multidisciplinaridade da biotecnologia	39 (4)	2017	MA
"Luzes" capilar: dos sa- lões de beleza à educa- ção química	Aspectos químicos no procedimento de "luzes" nos cabelos, destacando saberes e práticas empregados nos salões de beleza, assim como a relação indissociável entre conhecimento e contexto	40 (1)	2018	SP
Efeito estufa e camada de ozônio sob a perspectiva da interação radiação-matéria	Efeito estufa e camada de ozônio, destacando a COP-21 e o Protocolo de Montreal, e como diferentes radiações interagem com as moléculas da atmosfera	40 (2)	2018	MA
Energia, sociedade e meio ambiente no desen- volvimento de um biodi- gestor	Abordagem ambiental e socioeconômica da produção de biogás, a partir da construção de um biodigestor por alunos de ensino médio técnico	40 (3)	2018	MA
Produção de sabão no assentamento rural monte alegre	O saber popular das mulheres do assentamento Monte Alegre na produção de sabão como prática social e sua aplicação em sequências didáticas no ensino fundamental	41 (2)	2019	SP
A química dos alimentos funcionais	Revisão bibliográfica sobre os alimentos funcionais e uma pro- posta de abordagem desse tema no ensino e aprendizagem de química	41 (3)	2019	А
A polêmica da fosfoeta- nolamina no ensino de química	A polêmica liberação da fosfoetanolamina para tratamento do câncer no Brasil, em 2016, como tema de interface entre interesses científicos e sociais, a fim de estimular o pensamento crítico em sala de aula	41 (4)	2019	S
Leite em "mama" África e a educação para as rela- ções étnico-raciais	Intervenção pedagógica sobre o papel da química na descoberta de produção leiteira na África, no século V, além de ensaios qua- litativos para detecção de substâncias estranhas ao leite	42 (1)	2020	А
Propostas de ensino de química focadas nas questões étnico-raciais	Questões étnico-raciais e sua abordagem no ensino de química, a partir de temas como a plantação de cacau, os perfumes egípcios, a biografia de cientistas negros e a exploração histórica e atual dos povos	43 (3)	2020	SP
A química do pão de fer- mentação natural e as transformações na nossa relação com o preparo desse alimento	A química envolvida na feitura do pão de fermentação natural e os impactos de a indústria alimentícia ter assumido a maior parte da sua produção e comercialização como temática no ensino médio	43 (3)	2021	Α
A educação ambiental no ensino médio: desafios e possibilidades	Elaboração e aplicação de uma sequência didática no ensino de educação ambiental, com ênfase nas emissões de CO ₂ equivalente nas atividades cotidianas dos alunos	43 (3)	2022	MA
Trilha do metano	Desenvolvimento de um jogo didático sobre saneamento básico e aproveitamento energético do esgoto sanitário	45 (1)	2023	MA
Relato de uma experiência pedagógica no ensino de química	Estudo das propriedades dos agrotóxicos usados em uma co- munidade rural, a partir da experiência de um aluno cursando a escola pública no nordeste brasileiro	45 (2)	2023	MA
Ensino de química orgâ- nica a partir da temática óleos essenciais no com- bate ao mosquito Aedes aegypti	Uso da temática "óleos essenciais como larvicidas naturais contra o mosquito Aedes aegypti para revisar conteúdos de química orgânica	45 (3)	2023	S

Adaptação de Silva e Gomes (2015).

Na Figura 3, temos um comparativo dos números de artigos publicados na seção *Química e Sociedade*, nas três últimas décadas, reiterando a redução no número de publicações na última década (2016-2025), após uma evolução entre 2006 e 2015 em relação à primeira década. As maiores diminuições foram em "Ciência e Tecnologia" (para menos

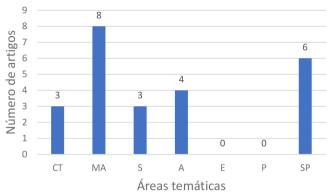


Figura 2: Quantidade de artigos publicados na seção Química e Sociedade, de 2016 a 2025, considerando-se as seguintes áreas: Ciência e Tecnologia, Meio Ambiente, Saúde, Alimentos, Energia, Polímeros e Saberes Populares.

publicações que na primeira década) e "Saúde", que teve um terço das publicações da primeira década. A única evolução visível na última década foi em "Saberes Populares", área temática que não aparece em nenhuma publicação na primeira década, mas que cresceu nas últimas duas décadas.

Chama atenção o fato de não haver nenhum artigo sobre energia ou polímeros na última década, já que essas áreas envolvem assuntos de grande apelo na interface química/ sociedade, tais como a evolução das baterias de carros e dispositivos elétricos, os termoplásticos, as borrachas naturais e sintéticas, ou as implicações dos microplásticos na sociedade, por exemplo.

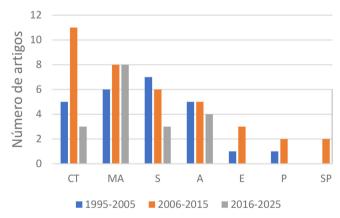


Figura 3: Comparativo da quantidade de artigos publicados na seção Química e Sociedade, nas três últimas décadas, considerando as áreas de: Ciência e Tecnologia, Meio Ambiente, Saúde, Alimentos, Energia, Polímeros e Saberes Populares.

Nesses 30 anos de história, a QNEsc tem sido um importante canal de divulgação científica e também para a formação de professores, que encontram na revista um apoio para vislumbrar metodologias de ensino baseadas em temas geradores. A seção *Química e Sociedade*, por sua vez, tem ajudado a promover e contextualizar a beleza e a importância da Química para diferentes segmentos da população. Os artigos dessa seção contribuem para a alfabetização científica, tendo em vista a Educação para a Cidadania, prevista nas diretrizes da Base Nacional Comum Curricular

(BNCC) (Brasil, 2018), o que propicia aos educandos uma aprendizagem significativa e a evolução para atitudes e escolhas mais conscientes e responsáveis, que acabam impactando positivamente a sociedade como um todo. Tal evolução representa um dos pilares para a plena formação cidadã. Além disso, os leitores dessa seção podem aprimorar seus conhecimentos científicos, a partir de abordagens e conceitos corretos, advindos de uma fonte confiável (o que é essencial em tempos de *fake news*), correlacionando-os com suas próprias experiências de vida (Silva e Gomes, 2015). No caso dos educadores, os assuntos abordados nos artigos permitem trabalhar temas transversais, seguindo uma abordagem interdisciplinar, na busca de uma aprendizagem significativa, conforme propõe Ausubel (2000).

Entre as competências gerais previstas na BNCC, visando à formação individual plena, "agir pessoal e coletivamente, com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários" (Brasil, 2018, p. 10), constituem habilidades essenciais à formação cidadã, contexto em que a alfabetização científica também é de suma importância. Os textos publicados na seção *Química e Sociedade* vão ao encontro dessas diretrizes formacionais, permitindo a incorporação, disseminação e contextualização da Ciência na realidade cotidiana da sociedade:

[...] a organização por áreas, como bem aponta o Parecer CNE/CP nº 11/2009, "não exclui, necessariamente, as disciplinas, com suas especificidades e saberes próprios, historicamente construídos, mas, sim, implica o fortalecimento das relações entre elas e a sua contextualização para apreensão e intervenção na realidade, requerendo trabalho conjugado e cooperativo dos seus professores no planejamento e na execução dos planos de ensino" (Brasil, 2018, p. 32).

As Ciências da Natureza e suas Tecnologias, conforme a BNCC, devem dar margem à contextualização social, ambiental e histórica do conhecimento, bem como à linguagem científica, reforçando o papel da seção *Química e Sociedade* em propostas de atividades integradas no ambiente escolar:

[...] é importante destacar que aprender Ciências da Natureza vai além do aprendizado de seus conteúdos conceituais. Nessa perspectiva, a BNCC da área de Ciências da Natureza e suas Tecnologias – por meio de um olhar articulado da Biologia, da Física e da Química – define competências e habilidades que permitem a ampliação e a sistematização das aprendizagens essenciais desenvolvidas no Ensino Fundamental, no que se refere: aos conhecimentos conceituais da área; à contextualização social, cultural, ambiental e histórica desses conhecimentos; aos processos e práticas de investigação e às linguagens das Ciências da Natureza (Brasil, 2018, p. 547).

O ensino interdisciplinar, discutido na BNCC, impõe-se no contexto moderno da Educação, sob influência de mudanças tecnológicas e desafios sociais que envolvem a sociedade. Essas mudanças rápidas devem ser incorporadas de forma dinâmica pelos docentes, e seus principais desafios consistem em priorizar metodologias que estabeleçam diálogos envolvendo os conteúdos de Química e as suas contextualizações (Brito et al., 2024). Tal fato reitera a importância da Química e Sociedade no auxílio aos professores, à luz desse contexto educacional, propiciando a implementação de metodologias ativas, que levam os educandos a construir seu próprio conhecimento, a partir da cooperação e colaboração com os demais colegas, colocando os estudantes como protagonistas no próprio processo de ensino e aprendizagem. Segundo Bacich e Moran (2018), a utilização de aprendizagem baseada em projetos (ABP) se insere nessa tendência metodológica, uma vez que incentiva os estudantes à resolução de questões e desafios do mundo real.

Fica claro, pelo levantamento apresentado, que a seção *Química e Sociedade* acabou encolhendo na última década. Mesmo um tema que costuma despertar bastante interesse aos leitores, a perícia criminal, só foi abordado em um artigo de 2010 nesta seção da revista (Dias e Antedomenico, 2010), sem contudo tratar de casos específicos como, por exemplo, a perícia em obras de arte. Nesse sentido, a fim de ajudar a preencher tal lacuna e promover a seção, na segunda parte deste trabalho será apresentada, ilustrativamente, a importância da Química na perícia em pinturas artísticas.

A Química na perícia em pinturas artísticas

A Química forense emprega diversos conhecimentos científicos e utiliza várias técnicas que envolvem conceitos de Química trabalhados na Educação Básica, relacionados, por exemplo, às propriedades da matéria, reações químicas, forças intermoleculares, oxirredução, estequiometria, soluções, comportamento dos gases etc. Essa temática, portanto, auxilia na contextualização de conceitos científicos, divulgando a atuação do perito criminal e também despertando o interesse de estudantes sobre diferentes possibilidades profissionais relacionadas à Química.

Os métodos de falsificação de obras de arte evoluíram juntamente com a evolução tecnológica da nossa sociedade. Machado (2019) estima que cerca de 40% das obras de artes que circulam no mercado sejam falsas, mercado esse que movimenta grandes cifras econômicas. Segundo o relatório anual Art Basel and UBS Global Art Market Report (2025), as exposições, galerias, museus e leilões movimentaram cerca de 420 bilhões de reais e o interesse por técnicas sofisticadas não-invasivas para a identificação de obras falsificadas tem crescido progressivamente. Tal preocupação já existe há décadas: Burroughs (1938) publicou um livro específico sobre análises laboratoriais para identificação de fraudes, que incluía uma técnica inovadora para a época: os Raios-X. De acordo com Perino (2020), o método comparativo foi um marco inicial no estudo da autenticidade, como

demonstrado no caso "A Polêmica de Dresden de 1871", que diferenciou a obra autêntica de Hans Holbein da cópia feita por Bartolomeu Sarburg. Esse caso foi emblemático para estabelecer padrões modernos na avaliação de obras de arte.

Diversas técnicas de físico-química e química analítica instrumental têm sido empregadas em perícias de pinturas artísticas, sobretudo as baseadas em interações com radiações eletromagnéticas para averiguar elementos e compostos químicos presentes, o que permite não apenas estabelecer parâmetros de autenticidade, mas também investigar materiais e métodos empregados na confecção da obra, trazendo detalhes históricos importantes sobre os autores. A radiografia revela imagens em camadas subjacentes na tela, como esboços ou retoques, as radiações ultravioleta (UV) e infravermelha podem revelar detalhes ocultos nas pinturas, que permitem trazer à tona traços preliminares, restaurações anteriores, ou mesmo algum componente que não deveria estar presente. Pinturas antigas geralmente são restauradas por especialistas, pois sofrem degradações ao longo do tempo; portanto, uma pintura datada de 1.500, em excelente estado e sem qualquer indício de restauração, pode ser um indicativo de fraude. Cumpre lembrar que, antigamente, era comum que pintores reutilizassem telas com esboços prévios, sobretudo para economizar materiais.

Na Figura 4, à esquerda, temos uma ilustração do quadro *Tre Donne* (Três Mulheres), de 1940, do artista alemão, naturalizado italiano, Massimo Campigli (1895-1971) (Rocco *et al.*, 2023). Ao centro, uma reflectografia de infravermelho, revelando traços prévios descartados pelo autor na obra final: detalhes dos pés da mulher mais à esquerda (elipse vermelha) e da barra da saia da mulher ao centro (retângulo azul), além de detalhes arquitetônicos do ambiente, destacados no círculo laranja sobre a cabeça da terceira mulher. A figura mais à direita, por sua vez, mostra um registro da fluorescência visível, induzida por radiação UV, que revela restaurações anteriores, pela coloração roxa ao longo das bordas da tela (Rocco *et al.*, 2023).

Nessa mesma pintura, a radiografia ratifica uma prática habitual do próprio Campigli (e compartilhada por muitos outros artistas): a reutilização de telas. Na Figura 5, vemos claramente um retrato oculto, de maior dimensão, em posição

Figura 4: À esquerda, ilustração da obra Três mulheres (1940) de Massimo Campligli (Acervo MAC-USP; Foto: JBittencourt/LACAPC/IFUSP). ©CAMPLIGLI, Massimo/AUTVIS, Brasil, 2023. Ao centro, reflectografia de infravermelho, revelando traços anteriores, descartados pelo autor na obra final (Foto: MRizzutto/JBittencourt/LACAPC/IFUSP). À direita, registro da fluorescência visível, induzida por UV, que revela indícios de restaurações (Foto: JBittencourt/LACAPC/IFUSP). Fonte: Rocco et al., 2023.

invertida, revelado em uma camada subjacente da tela. Além disso, análises por espectroscopia Raman e fluorescência de Raios-X por dispersão de energia (ED-XRF) demonstraram que Campigli utilizava uma variedade de pigmentos maior que a reportada em registros escritos (Rocco *et al.*, 2023).

Figura 5: Radiografia da obra Três mulheres (1940) de Massimo Campligli (Acervo MAC-USP; Foto: MRizzutto/ JBittencourt/ LACAPC/ IFUSP), revelando a face invertida e o detalhe sutil de um braço feminino, à direita, perto do lábio. Fonte: Rocco et al., 2023.

O interessante artigo de Thaumaturgo *et al.* (2023) ilustra a importância de técnicas físico-químicas na verificação da autenticidade de pinturas. Nesse estudo, utilizaram-se três métodos para averiguar a autenticidade de obras atribuídas ao pintor carioca Ivan Serpa: avaliação merceológica, estudo grafotécnico e análises físico-químicas de fluorescência de Raios-X (XRF) e espectroscopia no infravermelho com Transformada de Fourier (FTIR). A análise da composição de elementos e bandas nas telas em questão revelou diferenças marcantes, em comparação com padrões obtidos a partir de telas originais do autor, resultado que, somado às análises complementares, permitiu inferir que as telas periciadas eram falsas (Thaumaturgo *et al.*, 2023).

Geralmente, as análises físico-químicas se baseiam na identificação de componentes das tintas. Materiais comuns, como algodão e madeira, empregados pelos pintores, são produtos orgânicos e as cores das tintas são determinadas pela absorção ou emissão de comprimentos de onda por átomos e moléculas que os constituem. Comprimentos de onda na faixa do infravermelho ativam modos vibracionais das moléculas, enquanto comprimentos de onda na faixa da radiofrequência ativam *spins* nucleares e eletrônicos e a radiação ultravioleta/visível promove transições eletrônicas (Souza, 2022). A presença de matéria orgânica também possibilita usar o método do carbono-14 para estimar a idade da obra e, consequentemente, a época em que ela foi elaborada.

Frync (2021) descreve ainda a espectrometria de massa de razão isotópica (IRMS), que mede a razão entre isótopos de determinado elemento, como hidrogênio, carbono, nitrogênio e oxigênio, entre outros, com extrema exatidão. Em análises de falsificações, a IRMS permite identificar a origem de materiais utilizados, ajudando a encontrar incongruências na autenticidade de obras de arte. Outra técnica descrita por

Frync é a imagem hiperespectral (HSI), em que cada pixel de uma imagem gera um espectro de refletância, sendo esta técnica vantajosa para analisar, rapidamente, grandes áreas de objetos, possibilitando avaliações amplas de pigmentos. A HSI também pode revelar mensagens ou textos ocultos em obras, pela capacidade de detectar refletâncias em comprimentos de onda fora do espectro visível.

Segundo Galli *et al.* (2021), o ideal seria a utilização de múltiplas técnicas, para se ter a certeza de que determinada pintura é autêntica ou não. Nessa perspectiva, destaca-se a espectroscopia Raman, que traz informações químicas e estruturais que permitem identificar, de forma certeira, a maioria dos pigmentos. Embora as informações vibracionais obtidas pela espectroscopia Raman sejam semelhantes às obtidas por espectroscopia no infravermelho (IR), elas não são idênticas, mas sim complementares, devido às diferentes regras de seleção que regem o espalhamento vibracional Raman e a absorção no infravermelho. Outras técnicas de suporte, como a espectrometria de massa com plasma indutivamente acoplado (ICP-MS) e a espectrometria de absorção atômica também podem ser incluídas.

Desde a pré-história, as artes gráficas sempre estiveram presentes na sociedade humana, por exemplo, nas pinturas rupestres (Mello, 2023), sendo os primeiros pigmentos e aglutinantes naturais utilizados há mais de 5.000 anos, para registrar a rotina cotidiana e experiências de vida das comunidades. Estudos revelam que as pinturas vermelhas eram preparadas, basicamente, com materiais ricos em hematita ($\alpha \text{Fe}_2 \text{O}_3$), as pinturas amarelas continham goethita (αFeOOH) e as pinturas pretas essencialmente constituídas por carbono, presumivelmente de carvão vegetal (Cavalcante, 2014).

Com os avanços da sociedade, os pigmentos também foram sendo modificados, por exemplo, os egípcios empregavam ocres vermelhos, contendo ilmenite (FeTiO₂), mas também usavam cinábrio para o vermelho, que é sulfeto de mercúrio II (HgS). Para o amarelo, utilizavam o auripigmento, que é trissulfeto de arsênio (As₂S₂), e desenvolveram o pigmento chamado de azul egípcio, que é silicato de cobre e cálcio (CaCuSi₄O₁₀) (Cabral, 1997). Fica claro que os pigmentos usados geralmente continham elementos químicos perigosos, como metais potencialmente tóxicos, embora, em alguns casos, a baixa solubilidade do composto acabe diminuindo significativamente sua potencial toxicidade. O cinábrio (HgS), por exemplo, é um sal com um dos menores produtos de solubilidade (KPS) conhecidos e sua baixíssima solubilidade restringe a liberação de mercúrio livre (Hg²⁺), absorvível pelo organismo.

Antigamente, o acesso a diferentes cores e tonalidades era bem mais difícil que hoje. Os pintores renascentistas costumavam preparar suas próprias misturas de tintas, utilizando, como matéria-prima, pigmentos provenientes de plantas e minerais. "Depois, os pulverizavam, triturando-os entre duas pedras, adicionavam algum líquido aos pigmentos, a fim de converterem o pó numa espécie de pasta" (Gombrich, 2012, p. 240 *apud* Mello, 2023), e utilizavam a técnica da têmpera: mistura do pigmento com ovo.

Um caso muito interessante envolveu a análise de pigmentos usados por Leonardo da Vinci no fundo preparador da *Mona Lisa*, uma das maiores obras-primas da história da arte. Microanálises por Raios-X e infravermelho, de um minúsculo fragmento do canto superior direito do quadro (escondido pela moldura), revelaram que ele utilizou uma mistura de branco de chumbo (PbCO₃ e Pb₃(CO₃)₂(OH)₂) com óleo, que era uma novidade na Itália da época, sendo uma mistura similar também aplicada na camada de preparação da Última Ceia. Ele também empregava nessas misturas o vermelho de chumbo (Pb₃O₄) e um pigmento amarelado, chamado de massicot (PbO), além de azul ultramarine (Na₂Al₂Si₆O₃S₃) (Gonzalez *et al.*, 2023).

A Figura 6 apresenta uma ilustração da *Mona Lisa* (A) e sua radiografia (B), revelando a absorção por elementos pesados, em uma camada de tinta espessa sob a superfície. O macromapeamento elementar por fluorescência de Raiox-X para chumbo (C) demonstrou a presença de Pb por toda a pintura, tanto na paisagem de fundo, como nos traços da própria Mona Lisa. Este caso ilustra bem como as "assinaturas químicas" podem trazer à tona detalhes sobre materiais e métodos empregados pelos artistas, muitas vezes sem registros históricos.

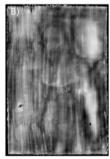


Figura 6: A) Mona Lisa (1503–1519), de Leonardo da Vinci, Museu do Louvre, Paris. O pequeno retângulo vermelho (acima, à direita) destaca a área da qual foi retirada a amostra analisada. Copyright E. Lambert — C2RMF. B) Radiografia, revelando elementos pesados numa camada de tinta subjacente. Copyright E. Ravaud — C2RMF. C) Macromapeamento elementar por fluorescência de Raiox-X para chumbo (Pb-Lα MA-XRF). Copyright E. Laval, T. Calligaro — C2RMF. Fonte: Gonzalez *et al.*, 2023.

Com os avanços na obtenção das tintas, certos pigmentos, como o branco de chumbo, foram deixando de ser usados. Van Gogh, por exemplo, ao pintar o quadro *Quarto em Arles* (1888), utilizou pigmentos como o branco de zinco (ZnO), um pouco de vermelho de chumbo, mas principalmente o "carmine lake", pigmento vermelho brilhante de um complexo de alumínio com o ácido carmínico ($C_{22}H_{20}O_{13}$). Ele também empregou o amarelo cromo (PbCrO₄, ou PbCrO₄. PbSO₄) e o azul ultramarine, muito embora, possivelmente pelo difícil acesso a este pigmento, tenha utilizado também o azul de cobalto (CoAl₂O₄) (Berns, 2019).

A aplicação das perícias ilustra a integração entre a Química, a conservação, análise e restauro de obras de arte, demonstrando sua importância para a museologia. Essa temática, portanto, permite promover um ensino e

aprendizagem transdisciplinar, integrador, envolvendo disciplinas aparentemente desconexas entre si, como Química, Física, Arte e História (Gorri e Santin-Filho, 2009), contribuindo, dessa forma, para apresentar aos alunos que as Ciências são importantes em áreas da sociedade que, muitas vezes, nem imaginamos.

Considerações finais

Nas últimas três décadas, a QNEsc tem se firmado como a mais importante referência para o Ensino de Química no Brasil. Nesse contexto, a seção Química e Sociedade comemora 30 anos de existência como um importante canal de divulgação científica, trazendo assuntos importantes à população, além de cumprir um papel formador, tanto para professores como para alunos, a partir de temas transversais, que vão ao encontro das habilidades e competências formativas preconizadas na BNCC. A redução no número de artigos publicados na últimas década reforça a necessidade de uma maior promoção dessa seção, sensibilizando e estimulando pesquisadores de diferentes áreas a enviar textos, com linguagem acessível e contextualizada, que ajudarão a ampliar a alfabetização científica em nosso país. A perícia em obras de arte é um exemplo de tema gerador, que ilustra a importância dos métodos científicos na solução de problemas práticos, correlacionando a História da Arte à aprendizagem de Ciências. Os métodos analíticos instrumentais, baseados, principalmente, na interação de radiações eletromagnéticas com substâncias presentes nos pigmentos das tintas revelam assinaturas químicas, que permitem atestar a autenticidade de obras e desvendar questões, muitas vezes ausentes em registros históricos, como, por exemplo, os materiais e métodos empregados por grandes artistas.

Edemar Benedetti Filho Edemar Benedetti Filho (edemar@ufscar.br) é licenciado e bacharel em Química, mestre e doutor em Química, ambos pela Universidade Federal de São Carlos (UFSCar). Atualmente é docente da Universidade Federal de São Carlos (UFSCar). Sorocaba, SP-BR. Leonardo Henrique Monteiro Leme (leonardo.monteiro@estudante.ufscar.br) é licenciando em Química pela Universidade Federal de São Carlos (UFSCar). Sorocaba, SP-BR. Alexandre D. M. Cavagis (cavagis@ufscar.br) é licenciado em Química, bacharel em Química Tecnológica, mestre e doutor em Bioquímica pela Universidade Estadual de Campinas (UNICAMP), PhD e pós-doutor pela University of Groningen (Holanda). Atualmente é docente da Universidade Federal de São Carlos (UFSCar). Sorocaba, SP-BR.

Referências

AUSUBEL, D. P. *The acquisition and retention of knowledge*. Londres: Springer, 2000.

BACICH, L. e MORAN, J. *Metodologias ativas para uma educação inovadora: uma abordagem teórico-prática*. Porto Alegre: Penso Editora, 2018.

BARDIN, L. *Análise de conteúdo*. São Paulo: Edições 70, 2011.

BERNS, R. S. Digital color reconstructions of cultural heritage using color-managed imaging and small-aperture

spectrophotometry. Color Research & Application, v. 44, n. 4, p. 531-546, 2019.

BRASIL. Base Nacional Comum Curricular: Educação Infantil e Ensino Fundamental. Brasília: MEC, 2018.

BRITO, A. R. S.; LOPES, R. C. S.; NASCIMENTO, G. S. F. e DAMACENA, A. K. *Revistaft*, v. 29, n. 141, 1-10, 2024.

BURROUGHS, A. Art criticismo from a laboratory. Boston: Little, Brown & Company, 1938.

CABRAL, J. M. P. História Breve dos Pigmentos 2: da arte egípcia. *Boletim da Sociedade Portuguesa de Química*, v. 66, p. 17-24. 1997.

CAVALCANTE, L. C. D. Caracterização arqueométrica de pinturas rupestres pré-históricas, pigmentos minerais naturais e eflorescências salinas de sítios arqueológicos. *Boletim do Museu Paraense Emílio Goeldi*, v. 9, n. 1, p. 259, 2014.

DIAS, C. R. e ANTEDOMENICO, E. A perícia criminal e a inderdisciplinaridade no ensino de ciências naturais. *Química Nova na Escola*, v. 32, p. 67-72, 2010.

FRYNC, J., Proof positive: applications of chemical analysis techniques in art forgery detection. *Museum Studies Theses*, v. 34, 2021.

GALLI, A.; GARGANO, M.; BONIZZONI, L.; BRUNI, S.; INTERLENGHI, M.; LONGONI, M. H.; PASSARETTI, A.; CACCIA, M.; SALVATORE, C.; CASTIGLIO, I. e MARTINI, M. Imaging and spectroscopic data combined to disclose the painting techniques and materials in the fifteenth century Leonardo atelier in Milan. *Dyes and Pigments*, v. 187, n. 4, p. 77-92, 2021.

GONZALEZ, V.; WALLEZ, G.; RAVAUDE, E.; EVENO, M.; FAZLIC, I.; FABRIZ, T.; NEVIN, A.; CALLIGARO, T.; MENU, M.; DELIUVIN, V. e COTTE, M. X-ray and Infrared Microanalyses of Mona Lisa's Ground Layer and Significance Regarding Leonardo da Vinci's Palette. *Journal of the American Chemical Society*, v. 145, n. 42, p. 205-213, 2023.

GORRI, A. P. e SANTIN-FILHO, O. Representação de temas científicos em pintura do século XVIII: um estudo interdisciplinar

entre química, história e arte. *Química Nova na Escola*, v. 31, n. 3, p. 184-189, 2009.

MACHADO, R. S. *Falsificação: uma questão para se pensar o campo da arte*. Trabalho de Conclusão de Curso de Graduação em História da Arte, Escola de Belas Artes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2019.

MELLO, L. P. Resgate do uso de pigmentos naturais no meio artístico utilizando plantas tradicionais do cerrado brasileiro. Trabalho de Conclusão de Curso de Graduação em Artes visuais, Universidade Estadual Paulista "Júlio de Mesquita Filho", 2023.

PERINO, G. A obra de arte frente ao perito: a falsificação na história da arte. *Revista Restauro*, v. 4, n. 30, p. 202-231, 2020.

ROCCO, R. D. F. M.; RIZZUTO, M. A.; SCHENATTO, J. e BOVOLENTA, J. B. Três mulheres de Massimo Campigli do acervo MAC USP e análises não invasivas: entre figuras femininas e um retrato oculto. *Revista de História da Arte e da Cultura*, v. 1, n. 1, p. 4-21, 2023.

SILVA, R. R. e GOMES, V. B. A seção química e sociedade: contribuições para um ensino em diferentes contextos. *Química Nova na Escola*, v. 37, n. 2, p. 146-153, 2015.

SOUZA, T. T. A história de Pernambuco como tema gerador para o ensino de química: pau-brasil e algodão. Trabalho de Conclusão de Curso de Graduação em Licenciatura em Química, Universidade Federal de Pernambuco, 2022.

THAUMATURGO, N.; LIARTH, R. S.; OLIVEIRA, A. P.; FIALHO, T. J. N. A.; SOUZA, C. R. F.; GRUIMARÃES, D.; OLIVEIRA, A. L. C.; FELIX, V. S.; PIMENTA, A. R.; OLIVEIRA, M. B.; OLIVEIRA, M. A. e FREITAS, R. P. Exame forense de obras de artes do pintor Ivan Serpa. *Revista Brasileira de Criminalística*, v. 12, n. 2, p. 91-98, 2023.

VIEIRA, M. A. S.; SOUSA, R. F.; ALVARENGA, E. M. e COLE, T. S. S. Ensino de química orgânica a partir da temática óleos essenciais no combate ao mosquito *Aedes aegypti. Química Nova na Escola*, v. 45, n. 3, p. 173-180, 2023.

Abstract: 30th anniversary of Chemistry and Society section and the investigation of art paintings. In three decades of history, the section Chemistry and Society has been an excellent channel for scientific dissemination, bringing relevant discussions on issues related to the chemistry/society interface, as well as contributing to both teacher training and students learning, with texts on interesting themes for chemical education. In this way, the first part of this work analyzes the articles published in this section over the last decade, revealing a decline in the total number of articles when compared to the previous two decades, as well as a nearly two-year gap in publications. To help bridge this gap and further promote this section, the second part of this article discusses the importance of physico-chemical analyses in investigations of art paintings, which provide strong evidence of authenticity to the works, based on chemical signatures of pigments, thus also revealing details about materials and methods used by great painters of our History. **Keywords:** chemistry and society, investigation, art paintings