

A seção "Experimentação no Ensino de Química" descreve experimentos cuja implementação e interpretação contribuem para a construção de conceitos científicos por parte dos alunos. Os materiais e reagentes usados são facilmente encontráveis, permitindo a realização dos experimentos em qualquer escola. Esta edição traz experimentos sobre a determinação de raios atômicos de átomos metálicos e de qualidade de detergentes.

Determinação do raio atômico de alguns metais

José de Alencar Simoni Matthieu Tubino

Este experimento que trata da determinação dos raios atômicos de alguns metais tem como aspectos marcantes a percepção do que representa o tamanho do átomo, de como um sólido cristalino se estrutura, da relação existente entre o micro e o macrocosmo e a interdisciplinaridade entre a química, a física e a matemática.

▶ raio atômico, metais, experimentação em química ◀

á alguns anos, publicamos um artigo que descrevia um experimento para a determinação dos parâmetros de uma cela unitária (Tubino, 1983), aplicável aos cursos de química de nível superior. Percebemos que muitos professores do ensino médio gostariam de usar o experimento mas esbarravam em duas dificuldades: a balança de precisão e a compra e uso do tolueno. Assim, procuramos fazer algumas modificações, tornando o experimento de menor custo e exequível em condições simples. A idéia fundamental é que o volume de um líquido deslocado por determinada massa de um sólido pode ser utilizado para determinar a densidade desse sólido. Alguns 'tarugos' metá-

licos têm as características desejáveis para a realização do experimento.

Dimensões de átomos, íons e distâncias de ligação situam-se na faixa de 10⁻¹⁰ metros (1 ângstron ou 100 picometros). Imagine uma fileira de 1 cm de átomos de sódio (raio atômico 185,8 pm): ela seria formada por quase 27 milhões de átomos de sódio:

1 átomo \rightarrow 2 x 185,8 x 10⁻¹² m nº de átomos \rightarrow 1 x 10⁻² m

Pode-se perguntar: com essas reduzidas dimensões, é possível obter os valores de raios atômicos ou iônicos com razoável segurança? A resposta é sim. E também: para isso, sempre será necessário uma aparelhagem muito sofisticada? A resposta é não. O experimento aqui proposto prova es-

sas afirmações.

O objetivo principal desse experimento é determinar os raios atômicos dos metais alumínio, ferro e cobre. Para tal, determina-se a densidade do sólido e fazem-se alguns cálculos e aplicações de regras simples de geometria e de estequiometria.

Materiais necessários

- 2 garrafas de refrigerante tipo PET, de 2 L, com seção cilíndrica uniforme.
 - régua
 - barbante ou tiras de papel
- pedaços de alumínio, ferro ou cobre, com massas entre 500 e 1000 g, de formas geométricas definidas (cilíndricas, cúbicas ou mais complexas) e também de formas indefinidas
- balança comum (pode ser usada, por exemplo, a balança do açougue ou da padaria etc.)

Procedimentos

Sólidos metálicos de forma geométrica definida

Pegue um pedaço do metal com forma geométrica definida, determine sua massa em uma balança comum, com precisão de \pm 5 g. Determine as dimensões necessárias para o cálculo de seu volume. Procure em livros de matemática a equação adequada a essa figura.

Sólidos metálicos de forma geométrica definida ou não: determinação da densidade pelo deslocamento de uma coluna de água

Determine inicialmente a massa do metal como no item anterior. O volume do sólido será determinado pelo deslocamento de um líquido, no caso a água. Corte uma garrafa PET na sua parte superior. Cole uma fita adesiva externamente à garrafa, no sentido longitudinal. Coloque um volume de água que possa encobrir totalmente a amostra após a sua imersão. Marque o nível da água utilizando uma caneta de escrita fina. Mergulhe totalmente o metal na água, tomando o cuidado para não deixar 'espirrar' água para fora da garrafa. Não deixe bolhas de ar aderidas às paredes do metal. Anote a nova posição do nível da água. Com o auxílio de um barbante ou de uma fita de papel, determine o perímetro da circunferência da garrafa. Calcule o volume de água deslocado:

$$V = A \times (H_2 - H_1)$$

$$A = \pi \times r^2$$

$$r = P/2\pi$$

onde V é o volume de água deslocada, H_2-H_1 a diferença entre os dois níveis, A a área de seção, r o raio da circunferência e P o perímetro do cilindro. Este último pode ser obtido colocando-se um barbante ou fita em volta da garrafa, conforme mostrado na Figura 1.

Densidade

A densidade (d) do metal pode ser calculada pela equação:

$$d = m / V$$

onde m é a massa e V o volume do sólido.

Raio atômico

Todo sólido cristalino tem um arranjo ordenado das partículas que o compõem. Essas partículas repetem-se em uma determinada direção, a distâncias

Tabela 1: Relações estequiométricas e geométricas para os diversos retículos do sistema cúbico

Propriedade\	Sistema cúbico simples	Sistema cúbico de face centrada	Sistema cúbico de corpo centrado
Número de átom	nos		
por cela unitária	1	4	2
Base de cálculo	$r_{\rm at} = a_{\rm u}/2$	$r_{\rm at} = a_{\rm u}/2\sqrt{2}$	$r_{\rm at} = a_{\rm u}\sqrt{3/4}$
Base geométrica	a aresta	diagonal da face	diagonal do centro

regulares. A essa repetição, quando considerada em três eixos, denominase retículo cristalino. Na natureza existem 14 possíveis retículos cristalinos, os quais podem ser agrupados em sete sistemas. Aqui será tratado apenas o sistema cúbico, que possui três possíveis retículos, conforme mostrado na Figura 2.

Hipótese I

Considerando um sólido sem espaços vazios entre os átomos.

Considere inicialmente que o sólido metálico não tem espaços vazios e que, portanto, seja formado por 'átomos cúbicos'. Para um mol de átomos há uma massa correspondente (massa molar, M) e um volume molar (V_m) . A partir da densidade experimental podese calcular V_m :

$$d = M/V_{m}$$

Para se determinar o volume de um átomo divide-se $V_{\rm m}$ pela constante de Avogadro, no caso 6,023 x10²³ mol⁻¹.

Como o átomo foi considerado um

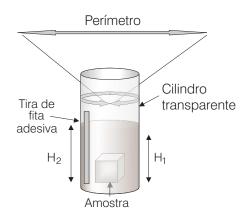
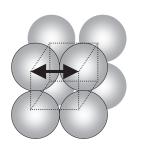
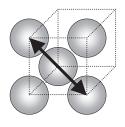
cubo, compare o volume determinado dessa maneira com o calculado para uma esfera. Use os dados de raios atômicos da Tabela 2 (procure em livros de matemática como determinar o volume de uma esfera a partir de seu raio).

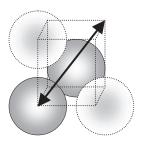
Hipótese II

Considerando o sólido como sendo do sistema cúbico simples e que o átomo seja uma esfera (repare que agora já há espaços vazios entre as esferas)

Para a discussão seguinte, havendo dificuldade em visualizar a contribuição de cada átomo para a cela unitária, sugerimos a construção de modelos com maçãs, laranjas ou bolas de isopor e palitos de madeira. Isso deve ajudar bastante a percepção visual do aluno.

Veja a Figura 2, para a cela unitária considerada. Há 1/8 de átomo em cada vértice do cubo; assim, cada cela unitária contém a massa de um átomo.


Figura 1: Esquema da montagem experimental e medidas.

Sistema cúbico simples ou primitivo

Sistema cúbico de faces centradas

Sistema cúbico de corpo centrado

Figura 2: Diferentes retículos pertencentes ao sistema cúbico e os parâmetros das celas unitárias utilizados para os cálculos dos raios atômicos em cada caso.

Tabela 2: Raios atômicos e densidades dos metais cobre, ferro e alumínio.

Átomo	Raio atômico / pm	Densidade / kg dm ⁻³
Cobre	128	8,96
Ferro	126	7,87
Alumínio	143	2,69

Logo, um mol de átomos corresponde a um mol de celas unitárias. Portanto, o volume molar $V_{\mathbf{m}}$ do item anterior é também o volume ocupado por um mol de celas unitárias. A aresta do cubo $(a_{\mathbf{u}})$ nesse retículo é do tamanho de dois raios atômicos $(r_{\mathbf{u}})$:

$$a_{_{\rm II}}=2\,r_{_{\rm at}}$$

Como o volume da cela unitária $(V_{\mathbf{u}})$ se relaciona com a aresta por:

$$V_{_{\rm U}} = (a_{_{\rm U}})^3$$

o raio atômico pode ser calculado.

A Tabela 1 resume todos as fórmulas de cálculo para os três tipos de retículos do sistema cúbico.

Para estabelecer as relações da Tabela 1, aplica-se o teorema de Pitágoras uma única vez para o sistema de faces centradas e duas vezes para o de corpo centrado. O valor de raio atômico calculado deve ser comparado com os valores da Tabela 2. O resultado que mais se aproximar do valor expresso na tabela serve para definir a qual sistema o metal em questão pertence.

José de Alencar Simoni (caja@iqm.unicamp. br), licenciado em química pela F.F.C.L.R.P. da USP e doutor em ciências pela Unicamp, é professor do Instituto de Química da Unicamp. Matthieu Tubino (tubino@iqm.unicamp.br), bacharel em química pela USP e doutor em ciências pela Unicamp, é professor do Instituto de Química da Unicamp.

Referências bibliográficas

1. TUBINO, M. Determinação de parâmetros da cela unitária – experiência de química geral. *Química Nova*, v. 6, n. 3, p. 109-111, 1983.

Para saber mais

CHASSOT, A.I. Catalisando transformações na educação. 3. ed., ljuí: Ed. Unijuí, 1995, cap. 6.

http://www.chem.ox.ac.uk/course/inorganicsolids/threedim.html

http://mach-pc66.mse.uiuc.edu/ ~tw/metals/prin.html