Material Suplementar

ESPAÇO ABERTO

Atividades experimentais problematizadas sobre redes metalorgânicas: introduzindo a Química Reticular no Ensino Médio

Caroline Batistin da Cruz Almeida, Paulo Rogério Garcez de Moura e Priscilla Paiva Luz

Roteiro da AEP 1

Quadro S1. Roteiro de pesquisa da AEP 1

Grupo:	
	os materiais (artigos ou sites) para responder às questões norteadoras abaixo. Ao final, da à questão problema: Como as MOFs removem contaminantes da água?
•	1: Síntese, caracterização e avaliação de redes metal-orgânicas para descontaminação de metal-orgânicas para de metal-
1.	O que significa o termo MOF?
2.	Observe a figura do resumo gráfico do artigo. Sendo a MOF uma rede tridimensional, identifique quais são suas partes constituintes no esquema abaixo:
3.	Quais metais podem ser utilizados na síntese de MOFs? Pinte sua localização na tabela periódica abaixo:

Licença permite compartilhamento com atribuição, proíbe uso comercial e não autoriza a distribuição de versões modificadas do conteúdo.

4. Qual o tipo de ligação química existente entre ligantes contendo o grupo carboxila e

metais? Represente utilizando o esquema abaixo.

Δrti	igos	2	2	Λ.
, ,, ,,	503	_	ч	

MOF-808: Síntese otimizada de redes metalorgânicas à base de Zr (IV) (MOFs-808) para armazenamento eficiente de hidrogênio. (Xu et al., 2019)

HKUST-1: Síntese, caracterização e aplicação assistida por ultrassom de uma rede metalorgânica: um projeto de laboratório de química geral verde. (Liu et al., 2019)

UiO-66 e 67: Um novo bloco de construção inorgânico de zircônio formando redes metalorgânicas com estabilidade excepcional. (Cavka et al., 2008)

- 5. Desenhe a estrutura em bastão dos ligantes contidos nas MOFs MOF-808, HKUST-1, UiO-66 e UiO-67. Se necessário, digite o nome dos ligantes no *Google* para conhecer sua estrutura.
- 6. Preencha a tabela abaixo, identificando as principais características das MOFs citadas.

MOF	Metal	Área superficial (m² g-¹)	Temperatura de decomposição (°C)
HKUST-1			
MOF-808			
UiO-66			
UiO-67			

Site: Pore Packing and Topology - https://chem.beloit.edu/classes/structure/packing.html

7. O que você entende por topologia? Para responder, observe a topologia da rede de cada MOF da tabela da questão 5 utilizando o site *Pore Packing and Topology*.

Quadro S2. Roteiro de prática experimental da AEP 2

Roteiro da AEP 2
Síntese da MOF HKUST-1 – Método de síntese direta
Síntese 1 – Com aquecimento e agitação
Procedimento:
Pesar: 0,526 g de ácido trimésico. m = 1,023 g nitrato de cobre hexahidratado. m =
Solubilizar cada sólido em 12 mL da solução de DMF:Etanol: H_2O (1:1:1 v/v) por agitação com bastão de vidro.
<u>Transferir</u> a solução do ligante para um balão de fundo redondo, <u>colocar</u> o balão no banho de aquecimento a 60°C e <u>adicionar lentamente</u> (gota por gota) a solução do metal.
Síntese 2 – Sem aquecimento e com agitação
Procedimento:
Pesar: 0,526 g de ácido trimésico. m =

Licença permite compartilhamento com atribuição, proíbe uso comercial e não autoriza a distribuição de versões modificadas do conteúdo.

1,023 g nitrato de cobre hexahidratado. m =				
Solubilizar cada sólido em 12 mL da solução de DMF:Etanol: H_2O (1:1:1 v/v) por agitação com bastão de vidro.				
<u>Transferir</u> a solução do ligante para um balão de fundo redondo e <u>adicionar lentamente</u> (gota por gota) a solução do metal.				
Método 2 – Síntese por difusão lenta				
Procedimento:				
<u>Pesar:</u>				
0,300 g de ácido trimésico. m = <u>Dissolver</u> em DMF-Acetonitrila (2:1 v/v).				
0,248 g acetato de cobre. m = <u>Dissolver</u> em DMF-Acetonitrila (1:2 v/v).				
<u>Transferir</u> a solução do ligante para um tubo de ensaio, <u>adicionar lentamente</u> (com auxílio de uma pipeta, escorrendo pelas laterais do tubo) a solução espaçadora e, por fim, adicionar lentamente a solução do				

Quadro S3. Roteiro de prática experimental da AEP 3

metal. Tampar o frasco e reservar.

Roteiro da AEP 3

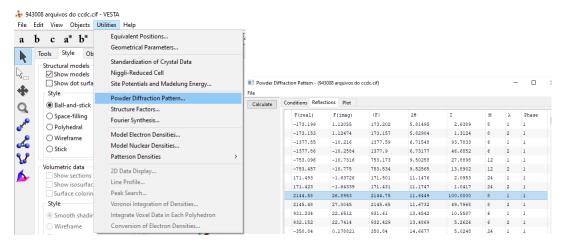
Preparação do compósito celloMOF: Síntese in situ da MOF HKUST-1 sobre fibra celulósica

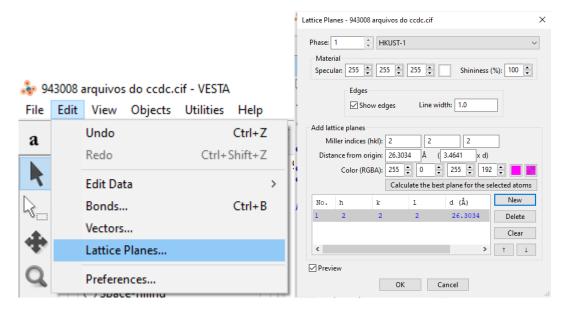
- Béquer 1: Solubilizar 0,86 g de acetato de cobre em 30 mL de água.
- Béquer 2: Transferir 30 mL de água destilada para solução de lavagem da fibra após imersão na solução do metal.
- Béquer 3: Solubilizar 0,50 g de ácido trimésico em 30 mL de solução 1:1:1 (V/V) de DMF, etanol e água (preparada previamente).
- Béquer 4: Transferir 30 mL de solução 1:1:1 (V/V) de DMF, etanol e água para solução de lavagem da fibra após imersão na solução do ligante.

Recortar uma amostra 2 x 2 cm do tecido de algodão e imergir na solução do metal durante 3 minutos, lavar no béquer 2 por 1 minuto, imergir na solução do ligante (béquer 3) por 3 minutos e lavar a fibra no béquer 4 por 1 minuto. Realizar este ciclo, metal-lavagem-ligante-lavagem por no mínimo 5 vezes. Ao final dos ciclos, depositar a fibra sobre uma placa de vidro para secagem.

Observação

A fibra utilizada nesta prática foi previamente pré-tratada com ácido cítrico para inserção de grupos carboxilato no substrato celulósico. Não é necessário esse procedimento para fins didáticos, mas realizálo aumenta a carga de MOF no compósito.


Procedimento adaptado de Bao *et al.* (2019). 0,200 g de tecido 100% algodão (5 x 5 cm) foram imersos em 24 mL de uma solução de ácido cítrico 0,5 mol L⁻¹, permanecendo sob agitação por 24 h a 50°C e a 120°C por 1,5 h. Em seguida, o tecido foi lavado em água destilada até que a água de lavagem atingisse pH neutro. A secagem foi realizada naturalmente em dessecador, à temperatura ambiente.


Visualização dos planos de difração de HKUST-1 utilizando o software Vesta®

Baixe o arquivo correspondente ao material HKUST-1 em https://www.ccdc.cam.ac.uk/structures/, utilizando o código 943008 em "Identifier(s)", e faça o download/instalação do software Vesta* em https://jp-minerals.org/vesta/en/download.html. Abra o arquivo pelo programa e siga os passos abaixo.

1. Utilities > Powder Diffraction Pattern > Reflections

- 2. Identifique os picos de maior intensidade (I) e veja quais são seus índices de Miller (h k l). No caso de HKUST, os três picos de maior intensidade acima de 5º (o mínimo observado nos difratômetros comuns) são: 2 0 0 (6.71°), 2 2 0 (9,50°) e 2 2 2 (11,65°).
- 3. Adicione esses índices de Miller para visualização dos planos em Edit > Lattice Planes > New. Caso plote mais de um plano ao mesmo tempo, utilize diferentes cores para diferenciação dos planos.

Caroline Batistin da Cruz Almeida (batistincarol@gmail.com) é licenciada, mestre e doutora em Química pela Universidade Federal do Espírito Santo. Atualmente é professora da Rede Estadual de Ensino do Espírito Santo.

Paulo Rogério Garcez de Moura (<u>paulomoura.ufes@gmail.com</u>) é licenciado em Química, mestre em Filosofia e doutor em Educação em Ciências pela Universidade Federal do Rio Grande do Sul. Atualmente é professor do Departamento de Química da Universidade Federal do Espírito Santo.

Priscilla Paiva Luz (<u>priscilla.luz@ufes.br</u>) é bacharel e doutora em Química pela Universidade de São Paulo. Atualmente é professora do Departamento de Química da Universidade Federal do Espírito Santo.

Licença permite compartilhamento com atribuição, proíbe uso comercial e não autoriza a distribuição de versões modificadas do conteúdo.